Pulsed Power Technology

Pulsed power refers to the science and technology of accumulating energy over a relatively long period of time and releasing it as a high-power pulse composed of high voltage and current over a short period of time; as such, it has extremely high power but moderately low energy. Pulsed power is produced by transferring energy generally stored in capacitors and inductors to a load very quickly through switching devices. Applications of pulsed power continue expansion into fields including the environment, recycling, energy, defense, material processing, medical treatment, plasma medicine, and food and agriculture.

Building upon the development of pulsed power generators which offer both high repetition and performance, scientists are now able to investigate effects of pulsed power on living organisms, and their research has expanded to encompass a new field known as bioelectrics. Section 2.1 summarizes pulsed power technology with a focus on this new field. Section 2.2 summarizes the basics of electric circuits, while Sect. 2.3 discusses pulsed power generators utilized for bioelectrics. Section 2.4 describes switches as a key technology. Measurement tools of pulsed power are shown in Sect. 2.5, and delivery of electric pulses to biological tissues using antennas is described in Sect. 2.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 117.69 Price includes VAT (France)

Softcover Book EUR 158.24 Price includes VAT (France)

Hardcover Book EUR 158.24 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Generation and Application of High Intensity Pulsed Electric Fields

Chapter © 2022

Pulsed Power Generators

Chapter © 2021

Industrial Pulsed Electric Field Systems

Chapter © 2017

References

  1. Paul, W.: Smith, Transient Electronics, Pulsed Circuit Technology. Wiley, Chichester (2002) Google Scholar
  2. Humphries Jr., S.: Principles of Charged Particle Acceleration. Wiley, New York (1990) Google Scholar
  3. Bluhm, H.: Pulsed Power Systems, Principle and Applications. Springer, Berlin (2006) Google Scholar
  4. Mesyats, G.A.: Pulsed Power. Springer, New York (2005) Google Scholar
  5. Akiyama, H. (ed.): IEEJ EEText, Kodenatsu Parusu Pawa Kougaku, Ohmsha, (in Japanese) (2003) Google Scholar
  6. Choi, J.: Introduction of the magnetic pulse compressor (MPC) – fundamental review and practical application. J. Electr. Eng. Technol. 5(3), 484–492 (2010) ArticleGoogle Scholar
  7. Barrett, D.M.: Core reset considerations in magnetic pulse compression networks, Pulsed Power Conference, 1995. Digest of technical papers. Tenth IEEE International, vol. 2, no., pp.1160,1165 vol. 2, (3–6 July 1995) doi: 10.1109/PPC.1995.599771
  8. Deyu Wang, Weiyang Wu, Da Li, Liqiao Wang: Compact Magnetic Compression Repetitive Pulsed Power Generator Based on IGBT. Electrical Machines and Systems, 2008. ICEMS 2008. International Conference on, pp. 1255–1258, 17–20 Oct 2008 Google Scholar
  9. Mankowski, J., Kristiansen, M.: A review of short pulse generator technology. IEEE Trans. Plasma Sci. 2(1), 102–108 (2000) ArticleGoogle Scholar
  10. Lyubutin, S.K., Mesyats, G.A., Rukin, S.N., Slovikovskii, B.G., Turov, A.M.: New solid state opening switches for repetitive pulsed power technology, High-Power Particle Beams, 1996 11th International Conference on, vol. 1, no., pp.135,138 (10–14 June 1996) Google Scholar
  11. Redondo, L., Silva, F.A.: Solid state pulsed power electronics. In: Rashid, M. et al. (eds.) Power Electronics Handbook 3rd edn. Butterworth-Hinemann Publishing, Elsevier, USA, ISBN # 9780123820365, chapter 26, pp 669–710 (2010) Google Scholar
  12. Kesar, A.S., Merensky, L.M., Ogranovich, M., Kardo-Sysoev, A.F., Shmilovitz, D.: 6-kV, 130-ps rise-time pulsed-power circuit featuring cascaded compression by fast recovery and avalanche diodes. Electron. Lett. 49(24), 1539–1540 (2013) ArticleGoogle Scholar
  13. Mohan, N., Undeland, T., Robbins, W.: Power Electronics: Converters, Applications and Design, 2nd edn. Wiley, New York (1995) Google Scholar
  14. Rashid, M.H. (ed.): Power Electronics Handbook, 2nd edn. Academic, Elsevier, San Diego (2007). ISBN 10:0-12-088479-8. ISBN 13:978-0-12-088479-7 Google Scholar
  15. Baker, R.J., Johnson, B.P.: Applying the Marx Bank circuit configuration to power mosfets. Electron. Lett. 29(1), 56–57 (1993) ArticleGoogle Scholar
  16. Baker, R.J., Ward, S.T.: Designing nanosecond high voltage pulse generators using power MOSFETs. Electron. Lett. 30(20), 1634–1635 (1994) ArticleGoogle Scholar
  17. Welleman, A., Waldmeyer, J., Ramezani, E.: Solid state switches for pulse power modulators. In: Proc. Linear Particle Accelerator Conf., pp. 707–709 (2002) Google Scholar
  18. Jiang, W., et al.: Compact solid-state switched pulsed power and its applications. Proc. IEEE 92(7), 1180–1196 (2004) ArticleGoogle Scholar
  19. Mazumder, S.K., Sarkar, T.: SiC based optically-gated high-power solid-state switch for pulsed-power application. Mater. Sci. Forum 600–603, 1195–1198 (2008) Google Scholar
  20. Racz, B., Patocs, A.: Fast high-voltage resistive pulse divider. Meas. Sci. Technol. 3, 926 (1992) ArticleGoogle Scholar
  21. www.highvoltageprobes.com (as of 30 Dec 2014)
  22. Winands, G.J.J.: Efficient Streamer Plasma Generation. PhD Thesis Eindhoven University of Technology (2007) Google Scholar
  23. van Deursen, A.P.J., Gulickx, P.F.M., van der Laan, P.C.T.: A Current and Voltage Sensor in One Unit. 8th International Symposium on High Voltage Engineering, Yokohama (1993) Google Scholar
  24. van Deursen, A.P.J., Smulders, H.W.M., de Graaff, R.A.A.: Differentiating/integrating measurement setup applied to railway environment. IEEE Trans. Instrum. Meas. 55, 316–326 (2006) ArticleGoogle Scholar
  25. van Heesch, E.J.M., van Deursen, A.P.J., van Houten, M.A., Jacobs, G.A.P., Kersten, W.F.J., van der Laan, P.C.T.: Field Tests and Response of the D/I H.V. Measuring System. Sixth International Symposium on High Voltage Engineering, New Orleans (1989) Google Scholar
  26. van Heesch, E.J.M., van Rooij, J.N.A.M., Noij, R.G., van der Laan, P.C.T.: A new current and voltage measuring system; tests in a 150 kV and 400 kV GIS. Proc. 5th Int. Symp. High Voltage Eng. 3, 73.06 (1987) Google Scholar
  27. van Houten, M.A.: Electromagnetic Compatibility in High-Voltage Engineering. PhD thesis, Eindhoven University of Technology (1990) Google Scholar
  28. Keller, R.: Wideband high voltage probe. Rev. Sci. Instrum. 35, 1057–1059 (1964) ArticleGoogle Scholar
  29. Smulders, H.W.M., de Graaff, R.A.A., Janssen, M.F.P., van Alphen, G.: Measurement systems for AC traction power supply systems. Int. Conf. Railw. Traction Syst. Capri Proc. 2, 139–159 (2001) Google Scholar
  30. Huiskamp, T., Beckers, F.J.C.M., van Heesch, E.J.M., Pemen, A.J.M.: First implementation of a subnanosecond rise time, variable pulse duration, variable amplitude, repetitive, high-voltage pulse source. IEEE Trans. Plasma Sci. 42(3), 859–867 (2014) ArticleGoogle Scholar
  31. Huiskamp, T., Voeten, S.J., van Heesch, E.J.M., Pemen, A.J.M.: Design of a subnanosecond rise time, variable pulse duration, variable amplitude, repetitive, high-voltage pulse source. IEEE Trans. Plasma Sci. 42(1), 127–137 (2014) ArticleGoogle Scholar
  32. Lorusso, A., Nassisi, V., Siciliano, M.: Fast capacitive probe for electromagnetic pulse diagnostic. Rev. Sci. Instrum. 79(6), 064702 (2008) ArticleGoogle Scholar
  33. Voeten, S.J.: Matching High Voltage Pulsed Power Technologies. Ph.D. dissertation, Dept. Electr. Eng., Eindhoven Univ. Technol., Eindhoven (2013) Google Scholar
  34. Smith, P.: Transient Electronics: Pulsed Circuit Technology. Wiley, New York (2002) Google Scholar
  35. Huiskamp, T., van Heesch, E.J.M., Pemen, A.J.M.: Final Implementation of a Subnanosecond Rise Time, Variable Pulse Duration, Variable Amplitude, Repetitive, High-Voltage Pulse Source. Accepted for IEEE Trans. Plasma Sci., on line 8 Dec 2014 Google Scholar
  36. http://www.pearsonelectronics.com (as of 30 Dec 2014)
  37. Rogowski, W., Steinhaus, W.: Die Messung der magnetischen Spannung. Arch. Elektrotechnik 1(Pt.4), 141–150 (1912) ArticleGoogle Scholar
  38. van Bree, J.W.M., Geysen, J.J.G., van Heesch, E.J.M., Pemen, A.J.M.: Novel nanosecond pulsed electric field device for noncontact treatment of cells in native culture conditions. IEEE Trans. Plasma Sci. 41(10), 2654–2658 (2013) ArticleGoogle Scholar
  39. Zhen, L.: Multiple-Switch Pulsed Power Generation Based on a Transmission Line Transformer. PhD Thesis Eindhoven University of Technology (2008) Google Scholar
  40. Smulders, H.W.M., van Heesch, E.J.M., van Paassen, S.V.B.: Pulsed power corona discharges for air pollution control. IEEE Trans. Plasma Sci. 26, 1476–1484 (1998) ArticleGoogle Scholar
  41. Schoenbach, K.H., Xiao, S., Joshi, R.P., Camp, J.T., Heeren, T., Kolb, J.F., Beebe, S.J.: The effect of intense subnanosecond electrical pulses on biological cells. IEEE Trans. Plasma Sci. 36, 414–422 (2008) ArticleGoogle Scholar
  42. Rogers, W.R., Merritt, J.H., Comeaux Jr., J.A., Kuhnel, C.T., Moreland, D.F., Teltschik, D.G., Lucas, J.H., Murphy, M.R.: Strength duration curve for an electrically excitable tissue extended down to near 1 nanosecond. IEEE Trans. Plasma Sci. 32, 1587–1599 (2004) ArticleGoogle Scholar
  43. Jiang, N., Cooper, B.Y.: Frequency-dependent interaction of ultrashort E-fields with nociceptor membranes and proteins. Bioelectromagnetics 32, 148–163 (2011) ArticleGoogle Scholar
  44. Xiao, S., Guo, S., Nesin, V., Heller, R., Schoenbach, K.H.: Subnanosecond electric pulses cause membrane permeabilization and cell death. IEEE Trans. Plasma Sci. 58, 1239–1245 (2011) Google Scholar
  45. Camp, J.T., Jing, Y., Zhuang, J., Kolb, J.F., Beebe, S.J., Song, J., Joshi, R.P., Xiao, S., Schoenbach, K.H.: Cell death induced by subnanosecond pulsed electric fields at elevated temperatures. IEEE Trans. Plasma Sci. 40(10), 2334–2347 (2012) ArticleGoogle Scholar
  46. Baum, C.E.: Focal waveform of a prolate-spheroidal impulseradiating antenna (IRA). Radio Sci. 42, RS6S27 (2007) ArticleGoogle Scholar
  47. Trefna, H.D., Vrba, J., Persson, M.: Time-reversal focusing in microwave hyperthermia for deep-seated tumors. Phys. Med. Biol. 55, 2167–2185 (2010) ArticleGoogle Scholar
  48. Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R., Schlag, P.M.: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3(8), 487–497 (2002) ArticleGoogle Scholar
  49. Converse, M., Bond, J.E., Veen, B.D., Hagness, S.C.: A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment. IEEE Trans. Microwave Theory Tech. 54(5), 2169–2180 (2006) ArticleGoogle Scholar
  50. Yarovoy, A.G., Ligthart, L.P., Matuzas, J., Levitas, B.: UWB radar for human being detection. IEEE Aerosp. Electron. Syst. Mag. 21, 22–26 (2006) ArticleGoogle Scholar
  51. Miller, E.K.: Chapter 5: Time-Domain Measurements in Electromagnetics, pp. 122. Van Nostrand Reinhold Company Inc., New York (1986) Google Scholar
  52. Allen, B., Dohler, M., Okon, E.E., Malik. W.Q., Brown, A.K., Edwards, D.J.: Chapter 7: Ultra-Wideband Antennas and Propagation for Communications, Radar and Imaging. Wiley, Chichester (2007) Google Scholar
  53. Wiesbeck, W., Adamiuk, G., Sturm, C.: Basic properties and design principles of UWB antennas. Proc. IEEE 97(2), 372–385 (2009) ArticleGoogle Scholar
  54. Smith, G.S.: Teaching antenna radiation from a time-domain perspective. Am. J. Phys. 69(3), 288 (2001) ArticleGoogle Scholar
  55. Baum, C.E.: Focused Aperture Antennas. Sensor and Simulation Notes 306, (1987) Google Scholar
  56. Grimnes, S., Martinsen, O.G.: Bioimpedance and Bioelectricity Basics. Academic Press, London (2000) Google Scholar
  57. Barnes, F.S., Greenebaum, B.: Handbook of Biological Effects of Electromagnetic Fields. Introduction by C. Polk. CRC press, Boca Raton (2006) Google Scholar
  58. Kumar, P., Baum, C.E., Altunc, S., Buchenauer, J., Xiao, S., Christodoulou, C.G., Schamiloglu, E., Schoenbach, K.H.: A hyperband antenna to launch and focus fast high-voltage pulses onto biological targets. IEEE Trans. Microwave Theory Tech. 59, 1090–1101 (2011) ArticleGoogle Scholar
  59. Xiao, S., Altunc, S., Kumar, P., Baum, C.E., Schoenbach, K.H.: A reflector antenna for focusing in the near field. IEEE Antennas Wirel. Propag. Lett. 9, 12–15 (2010) ArticleGoogle Scholar
  60. Bajracharya, C., Xiao, S., Baum, C.E., Schoenbach, K.H.: Target detection with impulse radiating antenna. IEEE Antennas Wirel. Propag. Lett. 10, 496–499 (2011) ArticleGoogle Scholar
  61. Ishizawa, H., Tanabe, T., Yoshida, D., Hosseini, S.H.R., Katsuki, S., Akiyama, H.: Focusing system of burst electromagnetic waves for medical applications. IEEE Trans. Dielectr. Electr. Insul. 20(4), 1321–1326 (2013) ArticleGoogle Scholar
  62. Guo, F., Yao, C., Bajracharya, C., Polisetty, S., Schoenbach, K.H., Xiao, S.: Simulation of delivery of subnanosecond pulses to biological tissues with impulse radiating antenna. Bioelectromagnetics 35, 145–159 (2013) ArticleGoogle Scholar
  63. Xiao, S., Guo, F., Li, J., Hou, G.. Schoenbach, K.H.: Simulation of delivery of subnanosecond electric pulses into biological tissues. In: Proceedings of the 2012 IEEE International Power Modulator and High Voltage Conference, San Diego (2012) Google Scholar

Author information

Authors and Affiliations

  1. Kumamoto University, Kumamoto, Japan Hidenori Akiyama & Sunao Katsuki
  2. Lisbon Engineering Superior Institute, Lisbon, Portugal Luis Redondo
  3. Iwate University, Iwate, Japan Masahiro Akiyama
  4. Eindhoven University of Technology, Eindhoven, The Netherlands A. J. M. Pemen, T. Huiskamp, F. J. C. M. Beckers & E. J. M. van Heesch
  5. Demcon, Eindhoven, The Netherlands G. J. J. Winands
  6. Moog-Bradford, Heerle, The Netherlands S. J. Voeten
  7. Zhejiang University, Hangzhou, China L. Zhen
  8. Vabrema, Eindhoven, The Netherlands J. W. M. van Bree
  9. Old Dominion University, Norfolk, USA Shu Xiao & Ross Petrella
  1. Hidenori Akiyama